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ABSTRACT

Context. Observations from ground-based telescopes are severely perturbed by the presence of the Earth’s atmosphere. The use
of adaptive optics techniques has allowed us to partly overcome this limitation. However, image-selection or post-facto image-
reconstruction methods applied to bursts of short-exposure images are routinely needed to reach the diffraction limit. Deep learning
has recently been proposed as an efficient way to accelerate these image reconstructions. Currently, these deep neural networks are
trained with supervision, meaning that either standard deconvolution algorithms need to be applied a priori or complex simulations of
the solar magneto-convection need to be carried out to generate the training sets.
Aims. Our aim here is to propose a general unsupervised training scheme that allows multiframe blind deconvolution deep learning
systems to be trained with observations only. The approach can be applied for the correction of point-like as well as extended objects.
Methods. Leveraging the linear image formation theory and a probabilistic approach to the blind deconvolution problem produces a
physically motivated loss function. Optimization of this loss function allows end-to-end training of a machine learning model com-
posed of three neural networks.
Results. As examples, we apply this procedure to the deconvolution of stellar data from the FastCam instrument and to solar extended
data from the Swedish Solar Telescope. The analysis demonstrates that the proposed neural model can be successfully trained without
supervision using observations only. It provides estimations of the instantaneous wavefronts, from which a corrected image can be
found using standard deconvolution techniques. The network model is roughly three orders of magnitude faster than applying standard
deconvolution based on optimization and shows potential to be used on real-time at the telescope.
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1. Introduction

The observation of astronomical objects from ground-based
observatories is degraded by the presence of turbulence in the
Earth’s atmosphere. One obvious solution is to move the obser-
vatory to space to avoid the atmosphere, but this is often not
feasible due to technological or budgetary reasons. Additionally,
the largest and most advanced telescopes are always built on the
ground, because they usually require state-of-the-art technology.

Active and, especially, adaptive optics (AO), that is,
deformable optics that can compensate for the effect of the
atmosphere almost in real time, have facilitated the use of
ground-based telescopes. The combination of very fast sensors
(that allow the measurement of instantaneous wavefront) and
deformable mirrors (that correct the wavefront that reaches the
science cameras) can produce images very close to the diffrac-
tion limit of the telescopes, at least in a reduced field of view
(FOV). As a demonstration of the importance of AO, currently
more than 25% of the observations in some large-aperture tele-
scopes like Keck and VLT use an AO device (Rigaut 2015),
and this figure reaches ∼100% in the case of solar observations.
These AO systems have been extremely successful in the near-
infrared, where the perturbing effect of the atmosphere is less
important. AO systems working for visible and near-ultraviolet
wavelengths are much more demanding and, although lagging

behind, much effort is currently going into making them robust.
Successful use of AO systems in the visible has been demon-
strated by the field of solar physics, where such systems are com-
monly used in telescopes like the Swedish 1 m Solar Telescope
(SST) at the Observatorio del Roque de los Muchachos (Spain),
the GREGOR telescope on the Observatorio del Teide (Spain),
or the Goode Solar Telecope (GST) on the Big Bear Observatory
(USA).

Even if AO systems are working properly, some residual
wavefront perturbations are still present on the images. These
residuals are a consequence of the accumulation of different
sources, such as for example (i) imperfect measurement of the
wavefront by wavefront sensors (WFSs), (ii) imperfect correc-
tion of this wavefront measurement by the deformable mirrors ,
(iii) some delay between the measurement and the actuation, (iv)
static aberrations in the telescope+instrument optics that are not
corrected by AO systems, and (v) poor correction of the FOV
away from the optical axis (classical AO systems with one WFS
and one pupil deformable mirror produce their best correction
close to this axis).

For the above reasons, reaching the diffraction limit of a
telescope in a large FOV is not often possible without a pos-
teriori image-correction methods. The simplest techniques of a
posteriori correction are based on frame selection, also known
as lucky imaging. These methods rely on the fact that the
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wavefront deformation due to the atmosphere is small at some
selected frames when a long burst of short-exposure images is
acquired. The fraction of such lucky frames decreases when
the atmospheric turbulence increases. Another problem with this
technique lies in its low photon efficiency, because a very large
fraction of the frames are discarded. An additional drawback is
that it only works properly for small or medium-sized telescopes,
with diameters below 2.5 m. In larger telescopes, the probability
that low turbulence is found in a significant fraction of the tele-
scope aperture quickly goes to zero. Instruments like FastCam
(Oscoz et al. 2008), which we use in this paper, are fully based
on the exploitation of this idea.

More elaborate techniques are based on speckle methods
(Labeyrie 1970; von der Lühe 1993), which make use of all the
recorded frames to get an estimation of the image. Paxman et al.
(1992) later proposed some improvements, which are now at
the base of many of the most advanced methods currently in
use. The first improvement was the assumption of a very flex-
ible parametric point spread function (PSF) that is especially
suited for telescopic observations. This is done via a linear
expansion of the aberrations in the pupil of the system in a
suitable basis. Although other options have also been explored
(e.g., Markham & Conchello 1999), the approach proposed by
Paxman et al. (1992) is very efficient. The second was the use of
phase-diversity techniques (Gonsalves & Chidlaw 1979), which
consist of simultaneously taking pairs of images (or more) with
a known static differential aberration. The third improvement
was a proper treatment of the noise models, which result in dif-
ferent optimizations. Löfdahl & Scharmer (1994) and Löfdahl
et al. (1998), based on the work of Paxman et al. (1992), applied
this latter technique to solar observations, while Löfdahl et al.
(2002) extended it to the multiframe case. van Noort et al. (2005)
later applied it to the multiobject and multiframe case, develop-
ing the successful multi-object multi-frame blind deconvolution
(MOMFBD) code, which is systematically applied in solar fil-
tergraph observations. Hirsch et al. (2011) also considered an
online version of multiframe blind deconvolution that is much
more memory efficient.

All previous approaches are conveniently based on the max-
imization of a proper likelihood function that is automatically
defined by the statistical properties of the noise. As maxi-
mum likelihood methods can be sensitive to noise, Bayesian
approaches are also widespread in the blind deconvolution com-
munity (see, e.g., Molina et al. 2001, and references therein).
This approach, in which a priori information about the object
or the PSF is put forward, are arguably more important in
single-frame deconvolution (e.g., Blanco & Mugnier 2011), but
they can also be applied to the multiframe case. For instance,
Bucci et al. (1999) regularize the phase-diversity problem by
imposing additional constraints on the merit function, while
Blanc et al. (2003) consider the marginal deconvolution in
the same problem. Along this line, Thelen et al. (1999) solve
the blind deconvolution problem by assuming a multivariate
Gaussian prior for the wavefront parameters.

The emergence of deep learning has revolutionized the field
of image processing. In particular, methods have been proposed
for the deblurring of video sequences (Wieschollek et al. 2017),
for the rapid estimation of PSFs from images (Möckl et al. 2019),
and for the modeling of simple PSFs (Herbel et al. 2018) for
large-scale surveys. It is evident that methods that make use
of many frames to produce a single deconvolved frame make
much better use of the collected photons and should always be
preferred over lucky imaging techniques. However, their main
disadvantage resides in the large computational requirements,

especially when applied to long rapid bursts of large images,
as in solar observations. Supercomputers become necessary to
deconvolve the data and deep learning can be a remedy to
lower the computational requirements. With this idea in mind,
Asensio Ramos et al. (2018) recently developed an extremely
fast multiframe blind deconvolution approach based on super-
vised deep learning. Although the model is general, the results
were only considered for solar observations. It makes use of a
fully convolutional deep neural network that was trained, whilst
supervised, with images previously corrected with the help of
MOMFBD. Once trained, this method can deconvolve bursts
of short-exposure 1k × 1k images in ∼5 ms with an appropriate
Graphical Processing Unit (GPU). This opens up the possibil-
ity, for instance, of doing image deconvolution on the fly at the
telescope.

Although a step forward in terms of speed, the neural
approach developed by Asensio Ramos et al. (2018) has two
main issues. The first one is that it is trained with supervision, so
one needs to use the MOMFBD algorithm to build the training
set. Though not a major obstacle, a method that does not need
this previous step would be preferable. The second issue is that
the method developed by Asensio Ramos et al. (2018) outputs
only the deconvolved images. No estimation of the wavefront
in each individual frame is produced. Estimating the wavefronts
can be helpful to check the performance of the telescope and
instrument in order to understand the performance of the AO
or to reuse them when there are several instruments pointing to
the same FOV. For these reasons, in this work we present a new
deep learning scheme that can be trained in a fully unsupervised
manner whilst also producing an estimation of the wavefront for
each observed frame. Given the lack of supervision, the method
can be generally applied to any type of object, either point-like
or extended, once a sufficient number of observed images is
available.

2. Unsupervised training

2.1. Image formation

In this paper, we follow the formalism used by Löfdahl et al.
(2002) and van Noort et al. (2005), based on the work of
Paxman et al. (1992). The deconvolution of a burst of short-
exposure images1 is possible once the linear physics of image
formation is imposed. Let us assume that o is the image of the
object under study outside the Earth’s atmosphere. We acquire a
burst of N images taken at times {t1, t2, . . . , tN} through a linear
space invariant instrument (in our case, telescope+instrument)
and corrupted with uncorrelated Gaussian noise (see Sect. 2.3
for more details). Therefore, the image i j at time t j that is sensed
at the detector is given by:

i j(r) = o(r) ∗ s j(r) + n j(r), (1)

where ∗ is the convolution operator, s j is the PSF of the atmo-
sphere at time t j, n j is the uncorrelated Gaussian noise compo-
nent, and r is the spatial coordinate on the image. We note that
the object o(r) is common to all the N images. Any blind decon-
volution method then tries to simultaneously recover both o(r)
and s = {s1, . . . , sN} from the burst of images i = {i1, . . . , iN}. We
note that the index j can also be used to refer to simultaneous
images containing known differential aberrations following the
prescriptions of phase-diversity.
1 The exposure time should be small enough to freeze the atmospheric
turbulence in each exposure. In normal seeing conditions, an exposure
time significantly lower than 10 millisec is needed.
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The convolution operation in Eq. (1) can be translated
into simple multiplications if we transform the equation to the
Fourier space:

I j(u) = O(u) · S j(u) + N j(u), (2)

where the uppercase symbols represent the Fourier transform of
the lowercase symbols and u represents Fourier frequencies. The
symbol S j(u) is known as the optical transfer function (OTF).
The noise is still uncorrelated and Gaussian thanks to the linear
character of the Fourier transform.

The space invariant approximation is often violated in
normal conditions because of the presence of high-altitude tur-
bulence in the atmosphere. This produces different PSFs for
different portions of the FOV, with sizes defined by the aniso-
planatic angle. For this reason, when deconvolving an extended
object, spatially variant PSFs need to be considered. We note
that the overlap-add (OPA) approach is routinely used in solar
physics with the MOMFBD code with excellent results (e.g., van
Noort et al. 2005). However, more precise approaches like the
widespread method of Nagy & O’Leary (1998) and the recent
space-variant OLA (Hirsch et al. 2010) methods can be used (see
Denis et al. 2015, for a review).

2.2. Description of point spread functions

The OTF can be written in terms of the generalized pupil func-
tion:

S j(u) = F
[
|F −1(P j)|2

]
. (3)

In other words, the OTF is the Fourier transform of the PSF,
which in turn is given by the autocorrelation of the generalized
pupil function. The generalized pupil function can be written as:

P j = A jeiφ j , (4)

where A j describes the amplitude modulation of the pupil (the
aperture of the telescope, including the primary and secondary
and any existing spider) and φ j describes the phase at the pupil
(also known as wavefront). A flat wavefront produces an Airy
diffraction PSF. The presence of atmospheric turbulence affects
this phase by introducing a nonflat wavefront, which, as a con-
sequence, generates a complex PSF. We note that this formalism
allows us to take into account a phase-diversity channel by writ-
ing down the generalized pupil function as:

P j,PD = A jei(φ j+∆), (5)

where ∆ is the added diversity, which is usually a defocus.
Following Paxman et al. (1992), we assume that the wave-

front can be written (in radians) as a linear combination on a
suitable basis. The Zernike functions (e.g., Noll 1976) are among
the most useful functions for reproducing functions in the circle
because they are orthogonal in the unit circle. Despite their use-
ful mathematical properties, Zernike functions are not especially
suited to efficiently reproducing wavefronts produced by atmo-
spheric turbulence. This is because the covariance matrix of the
coefficients of the Zernike modes under Kolmogorov turbulence
(also termed Noll covariance matrix) is nondiagonal. Specifi-
cally, the elements of the Noll covariance matrix are given by
(Roddier 1990)

Ci j =

(
D
r0

) 5
3

(−1)
(ni+n j−2mi)

2 Bi jGi j, (6)

where
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1
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where Γ(x) is the Gamma function (Abramowitz & Stegun
1972), and D and r0 are the diameter of the telescope and Fried
radius, respectively. The δmi,m j Kronecker-like symbol is strictly
zero when mi , m j or when i − j is odd (unless mi = m j = 0)
and one otherwise.

As a consequence, we use in this paper the so-called
Karhunen-Loeve (KL) modes (e.g., van Noort et al. 2005), which
are obtained by numerically diagonalizing the covariance matrix
given by Eq. (6). This diagonalization is carried out using the
singular value decomposition, ordering the modes by their sin-
gular value. Therefore, the wavefront is finally written as:

φ j(x, y) =

M∑
i=1

α j,iKLi(x, y), (9)

where M is the number of functions used in the linear combina-
tion, (x, y) refer to coordinates in the pupil plane, α ji are the ith
KL coefficient of the j-th wavefront and KLi(x, y) are obtained
as linear combinations of the Zernike functions.

2.3. Loss function

From a Bayesian point of view, the multiframe blind deconvo-
lution problem requires the computation of the joint posterior
distribution for the object o and the α = {α1,α2, . . . ,αN} coeffi-
cients, conditioned on the observations:

p(o,α|i) ∝ p(i|o, s(α)) p(o,α), (10)

where the vector s(α) refers to the PSFs obtained with the coef-
ficients α. The posterior distribution is the product of the like-
lihood, p(i|o, s(α)), and the prior, p(o,α). We highlight the fact
that the likelihood depends on α through the PSFs. Sampling the
full high-dimensional posterior is computationally impracticable
and so point estimates are almost always used. The maximum a
posteriori (MAP) solution is therefore given by:

arg max
o,α

p(i|o, s(α)) p(o,α). (11)

Much success has been obtained following this path when dealing
with single-image blind deconvolution (e.g., Molina et al. 2001;
Mugnier et al. 2004; Blanco & Mugnier 2011; Babacan et al. 2012;
Farrens et al. 2017; Fétick et al. 2020).

The MAP solution introduces some regularization but it does
not exploit the full potential of the Bayesian approach. Methods
based on a Type-II maximum-likelihood approach require solv-
ing the following optimization problems in marginalized poste-
riors:

arg max
α

∫
p(i|o, s(α)) p(o, s(α)) do, (12)

arg max
o

∫
p(i|o, s(α)) p(o, s(α)) dα. (13)

These arguably lead to better results (see, e.g., Blanco & Mugnier
2011; Fétick et al. 2020) and we defer their consideration in the
neural unsupervised approach to a future publication.
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In this paper, we follow the approach of Löfdahl & Scharmer
(1994), Paxman et al. (1996), and van Noort et al. (2005) and
consider all objects and wavefront coefficients to be equally
probable a priori. Taking negative logarithms, the maximum
likelihood solution that we seek is:

arg min
o,α

L(o,α), (14)

where L(o,α) = − log p(i|o, s(α)) is the negative log-likelihood,
often termed ‘loss function’ in the machine learning literature.
To simplify the notation, we drop the dependency of the log-
likelihood on the PSF and show directly its dependence on the
wavefront coefficients.

2.3.1. Stationary Gaussian-noise model

Under the assumption of uncorrelated, independent, and identi-
cally distributed additive Gaussian noise, one can write the loss
function as:

L(o,α) =
∑

r

N∑
j=1

γ j

[
i j(r) − o(r) ∗ s j(r;α)

]2
, (15)

where the summation is carried out for all positions r (obvi-
ously now discretized in pixels) of all the images taken at times
{t1, t2, . . . , tN}. The term γ j is an estimation of the inverse noise
variance of the jth image. Applying both Parseval’s and the con-
volution theorems, one can write down the log-likelihood with
the Fourier components (dropping unimportant constants):

L(O,α) =
∑

u

N∑
j=1

γ j

∣∣∣H j(u)I j(u) − O(u) · S j(u;α)
∣∣∣2 , (16)

with the summation now carried out over Fourier frequencies.
Given the historical success of the approach of Paxman et al.
(1996), we utilize a frequency filter H j to minimize the effect of
noise in the observed images. The maximum likelihood solution
is then formally given by

arg min
O,α

L(O,α). (17)

This loss function is nonconvex in the set of parameters {O,α},
and one can apply an alternating optimization method to solve
it. This scheme iteratively considers the two following subprob-
lems:

arg min
O

L(O,α) with α constant, (18)

arg min
α

L(O,α) with O constant. (19)

The solution to the linear least squares problem of Eq. (18) is
(Paxman et al. 1992):

Ô(u) = H(u)

∑
j γ jI j(u)S ∗j(u;α)∑

j γ j

∣∣∣S j(u;α)
∣∣∣2 , (20)

where the caret indicates an estimated quantity. The filter H(u) is
used to ensure that all spatial frequencies for which all OTFs are
zero are not used and its specific form is discussed in Sect. 2.3.3.

Another possibility that we explore is to remove the filter
from the loss function (16) and instead use a Gaussian prior for
the object (although it is known that such priors generate overly

smooth images; see Tipping & Bishop 2002). The resulting esti-
mation of the object is a Wiener filter (e.g., Blanco & Mugnier
2011):

Ô(u) =

∑
j γ jI j(u)S ∗j(u;α)∑

j γ j

∣∣∣S j(u;α)
∣∣∣2 + S n

S 0(u)

, (21)

where S n is the power spectral density (PSD) of the noise and
S 0(u) is an estimation of the PSD of the object. The simplest
possible Wiener filter assumes S n/S 0(u) = K, with K a constant.

This estimated object can then be inserted back into Eq. (16)
resulting in a loss function that does not depend on the object
(see, e.g., Paxman et al. 1992; van Noort et al. 2005). For the
estimation of the object of Eq. (20) we have

L(α) =
∑

u

H(u)


∑

j

γ j

∣∣∣I j(u)
∣∣∣2 −

∣∣∣∣∑ j γ jI∗j (u)S j(u;α)
∣∣∣∣2∑

j γ j

∣∣∣S j(u;α)
∣∣∣2

 . (22)

For the Wiener filter estimation of the object, we end up with:

L(α) =
∑

u


S(α)

∑
j γ j

∣∣∣I j(u)
∣∣∣2 − ∣∣∣∣∑ j γ jI∗j (u)S j(u;α)

∣∣∣∣2
S(α) + S n

S 0(u)

 , (23)

where

S(α) =
∑

j

γ j

∣∣∣S j(u;α)
∣∣∣2 . (24)

In case many objects are observed simultaneously so that they
share the same wavefront, the total loss function is the result of
summing the loss function computed for each one of the objects.

Equations (22) and (23) define loss functions that can be
optimized with respect to α to find the instantaneous wavefront.
From these coefficients, the PSFs affecting each one of the N
frames of the burst can be computed. Once the wavefronts are
computed, the deconvolved image can easily be obtained using
Eqs. (20) or (21), although more elaborate nonblind deconvolu-
tion solutions can also be used. We use Eq. (20) for all the results
shown in this paper, so that:

O = P+

[
F −1(Ô(u))

]
, (25)

where we also enforce non-negativity by using the P+ operator,
which sets all negative pixels to zero.

2.3.2. Other noise models

The dominant noise in astronomical imaging is photon noise,
which follows a Poisson distribution. The main difficulty in
using the Poisson log-likelihood in our scheme is that a closed
form solution to Eq. (18) has not been found yet (Paxman et al.
1992). Fortunately, the Gaussian distribution is a good approx-
imation to the Poissonian once the number of photons is larger
than about 20. For this to happen, one has to make the distribu-
tion nonstationary with a variance equal to the number of pho-
tons, which avoids an easy transformation to the Fourier space.

In any case, the observations that we use for training are
not in the low-photon limit and the sources are not very bright
with respect to the background. As a consequence, and because
our objective is to show how a neural network can be trained
unsupervised for performing multiframe blind deconvolution,
we only refer to the Gaussian case with constant γ j per frame.
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Fig. 1. Block diagrams showing the architecture of the network and how it is trained unsupervisedly. The details of each layer are specified in
Table 1 and in Sect. 2.5.

Table 1. Architecture of the encoder–decoder network.

Layer Type Kernel size (a) Stride Input tensor shape (b) Output tensor shape (b)

C0,1 BN+ELU+CONV 3 × 3 ×C 1 W ×W ×C W ×W × 32
C1,1 BN+ELU+CONV 3 × 3 × 32 2 W ×W × 32 W/2 ×W/2 × 32

C1,2-C1,4 BN+ELU+CONV 3 × 3 × 32 1 W/2 ×W/2 × 32 W/2 ×W/2 × 32
C2,1 BN+ELU+CONV 3 × 3 × 32 2 W/2 ×W/2 × 32 W/4 ×W/4 × 32

C2,2-C2,4 BN+ELU+CONV 3 × 3 × 32 1 W/4 ×W/4 × 32 W/4 ×W/4 × 32
C3,1 BN+ELU+CONV 3 × 3 × 32 2 W/4 ×W/4 × 32 W/8 ×W/8 × 32

C3,2-C3,4 BN+ELU+CONV 3 × 3 × 32 1 W/8 ×W/8 × 32 W/8 ×W/8 × 32
C4 CONV W/8 ×W/8 × 512 1 W/8 ×W/8 × 32 1 × 1 × 512

Notes. The naming convention for the convolutional blocks is Cb,l, with b referring to the label indicated above each block in Fig. 1 and l to the
layer inside each block. (a)Kernel dimensions: W ×W ×C: W: kernel horizontal size, C: kernel depth. (b)Image dimensions: W ×W ×C: W: image
horizontal size, C: image number of channels.

2.3.3. Filter

The visual appearance of the deconvolved image heavily
depends on the specific details of the nonblind deconvolu-
tion technique that we use once the wavefront coefficients are
obtained. The results shown in this paper were computed using
Eq. (20), with the filter proposed by Löfdahl & Scharmer (1994)
that has shown very good practical results in solar images
(Löfdahl et al. 2002; van Noort et al. 2005). The filter has the
following form:

H = 1 −

∑
j

∣∣∣S j

∣∣∣2∣∣∣∣∑ j I jS ∗j
∣∣∣∣2 , (26)

where we set all values below 0.2 and above 1 to zero. Finally,
we remove all isolated peaks in the filter that cannot be directly
connected to the peak at zero frequency with H > 0.2.

2.4. Data preprocessing

In addition to the standard ill-defined multiframe blind deconvo-
lution problem, which can be alleviated with prior information,
this method is always subject to some fundamental ambiguities
that are harder to deal with (Paxman et al. 2019). One of the
most critical in our approach is the fact that the global tip-tilt
cannot be obtained. If the object is shifted by a certain amount,
one can always compensate for this with a tip-tilt contribution
in the wavefront so that the image of the object remains station-
ary. Consequently, any learning method that we use will become
confused about the specific amount of tip-tilt to infer from the
images. We force the results to have small tip-tilt coefficients by
pre-aligning all images of the burst so that the object of interest
is, on average, centered on the FOV. We do this by computing
the sum of all the images in the burst, computing the peak emis-
sion and shifting this peak to lie at the center of the image with
pixel precision.

2.5. Neural architecture

Our neural approach is based on the construction of a neural net-
work that can directly predict the vector α from the images of the
burst. This architecture is broadly made of the following compo-
nents. The first is a convolutional neural network shared for all
frames of the burst that extracts features from individual images
of size W × W. Two recurrent neural networks (RNNs) follow
and they take into account the time evolution of the tip-tilt and
high-order coefficients. The RNN in charge of the tip-tilt is not
applied to the first frame, which is assumed to have zero tip-tilt.
The main purpose of this RNN is to give the relative tip-tilt with
respect to the first frame. The high-order RNN is applied to all
frames. Two fully connected neural networks (FCLO and FCHO)
are shared by all frames and produce two heads for the predic-
tion of tip-tilt and high-order aberrations. The two predictions
are concatenated and, finally, we find a layer that computes the
OTFs from the wavefront coefficients, which are then plugged
into the loss function of Eq. (22) for training the architecture
end-to-end. Our approach is graphically depicted in Fig. 1 and
in the following we describe each component in detail.

2.5.1. Convolutional neural network

The aim of the first element of the architecture is to summa-
rize the images and extract all relevant information in a vector
that can be used later for the prediction of the wavefront coef-
ficients. This component is shared among all frames, so that it
can be applied in parallel for all the inputs images. This neural
network is a fully convolutional encoder whose properties are
summarized in Table 1. The first step is a convolutional layer
with a 3×3 kernel that generates 32 channels from the input ten-
sor. Both in the application to point-like objects and to extended
objects, we consider an input tensor with several channels. These
are outlined explicitly in Sects. 3 and 4. Then, a series of
standard convolutional blocks made from the consecutive appli-
cation of batch normalization (Ioffe & Szegedy 2015), an
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exponential linear unit activation function (ELU; Clevert et al.
2015), and a convolutional layer with the kernel size specified
in Table 1 are applied, generating intermediate feature tensors.
In order to accelerate convergence, skip connections are added
between the initial layer of a block and the last one. This final
layer, indicated in orange, uses a kernel of size W/8 × W/8 to
produce a vector of size 512 as output. We note that the input
images need to have a size multiple of 23 to produce an integer
number of latent features.

2.5.2. Recurrent neural network

The aim of the RNNs is to estimate the tip-tilt and high-order
coefficients of the wavefront for all images of the burst while
keeping some memory from the rest of the frames. The RNNs
can exploit any existing temporal correlation, which is a con-
sequence of the rapid cadence of the observations. Addition-
ally, it can potentially take into account that all frames share the
same object, which can be helpful for a better estimation of the
aberrations.

Although it is not possible to detect an absolute tip-tilt for
a single image, we can use the first frame as a reference and
estimate the tip-tilt of all remaining frames relative to the first
one. Both RNNs are gated recurrent units (GRU; Cho et al.
2014), which are able to deal with relatively long sequences.
We have also experimented with long-term short memory units
(Hochreiter & Schmidhuber 1997) with good results, although
they are more computationally demanding. Gated recurrent units
contain an internal state (cell) that remembers values over long
sequences, and gates (reset and update) that are used to control
the flow of information into and out of the cell. We choose the
cell to be a vector of length 512, of the same length as the input.
We also choose the GRU to be bidirectional, so it attends to the
inputs in the two possible directions, from frame 1 to frame N
and vice versa.

2.5.3. Fully connected neural networks

Two fully connected neural networks produce the final estima-
tion of the tip-tilt and high-order aberrations. The layers are
defined by the consecutive application of two linear transfor-
mations of sizes 512 × 512 and 512 × 512, each one followed
by an ELU activation. The two heads are obtained by predicting
the tip-tilt with a final linear transformation of size 512 × 2 and
the remaining high-order aberrations with a linear transforma-
tion of size 512 × (M − 2). The predicted wavefront coefficients
are computed by applying a final activation function a tanh(bx).
After some trial-and-error, we found that a = 2 and b = 1/10
gave good results. As the output is limited to the interval [−a, a],
one can increase a if very large aberrations are expected.

2.5.4. Computation of OTFs

Once the wavefront coefficients are known for all images in the
burst, one can use Eq. (9) to compute the phase on the pupil.
Then, the generalized pupil function is obtained from Eq. (4)
and the OTF from Eq. (3). This, together with the Fourier trans-
forms of the input images, are all the ingredients needed for the
computation of the loss function using Eq. (22).

2.6. Training

Training is done by modifying the parameters of the neural net-
works so that the loss function of Eq. (22) is minimized for a

suitable training set. The several components of our architecture
have a total number of ∼7.7 M free parameters. Training is car-
ried out using backpropagation, that is, computing the derivative
of the loss function with respect to the free parameters and using
this gradient to modify them. The recurrent neural network needs
to be trained using backpropagation in time. To this end, it is
unrolled for 25 steps and considered as a normal fully connected
neural network.

3. Results for point-like objects

As a first step, we consider point-like objects. These are not
really the main subject of deconvolution methods because their
properties (e.g., astrometry) can be measured with other meth-
ods (e.g., Weigelt 1977). However, they can be useful to verify
whether or not the estimated wavefronts are representative of the
instantaneous PSFs.

3.1. Baseline

In order to verify the ability of our neural approach to correctly
estimate the wavefront coefficients, we compare them with a
standard multiframe blind deconvolution method. This baseline
is obtained by minimizing the loss function of Eq. (22) using the
KL coefficients of the wavefront in each frame as unknowns. We
use PyTorch to optimize this loss function using the Adam opti-
mizer with a learning rate of 0.1. This learning rate was selected
by trial and error. The average computing time per iteration for
the deconvolution of 100 frames is ∼0.8 s. The typical number
of iterations for convergence is around 70, so the deconvolu-
tion can be achieved in around one minute. Obtaining reliable
results for sources with reduced signal-to-noise ratios (S/Ns)
per frame turned out to be challenging and, on some occasions,
impossible.

3.2. Training set

For the examples shown in this section we choose observa-
tions carried out with the FastCam instrument mounted on
the Nordic Optical Telescope (NOT) on the Observatorio del
Roque de los Muchachos (La Palma, Spain). FastCam is a lucky
imaging instrument jointly developed by the Spanish Instituto
de Astrofísica de Canarias and the Universidad Politécnica de
Cartagena. The instrument uses an Andor iXon DU-897 back-
illuminated EMCCD containing a 512 × 512 pixel frame. The
observations were carried out with a standard I Johnson-Bessel
filter at an effective wavelength of 824 nm with a width of
175 nm. The pixel size was 0.0303′′. The telescope diameter is
2.56 m, with a central obscuration of 0.51 m, giving a diffraction
limit of 0.0786′′. The observations were obtained on four con-
secutive nights on 2007 October 3–6, and include the following
objects: GJ1002, GJ144, GJ205, GJ661, RHY1, and RHY44, for
a total of several hundred thousand images of 128 × 128 pixels
during the four-day run. Some of these objects are single stars in
the FOV and others contain a pair of stars. The training set con-
sists of 40 bursts of 1000 images each with an exposure time of
30 ms, enough to efficiently freeze the atmospheric turbulence.
The images are taken at different times, and they cover reason-
ably variable seeing conditions. A validation set of nine bursts,
not used for training, was captured and set aside to check for
overfitting. Given the unsupervised nature of our approach, the
neural network can be easily refined by adding more observa-
tions which can cover different seeing conditions.
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Fig. 2. Original frames of the burst (first row), estimated PSF with the neural approach (second row) and the baseline (fourth row), together with
the reconstructed individual images (third and fifth rows). Several sources with different seeing conditions and characteristics are displayed.

The training is done by randomly extracting 1000 short
bursts of 25 frames (this is the number of unrolled steps of the
GRU recurrent component of our architecture) from each one
of the 40 available observations, for a total of 40 000 training
examples. To facilitate the training, the images are normalized
by computing the maximum and minimum in the burst and map-
ping these values to the [0, 1] interval. Additionally, we use two
channels as input, one containing the normalized image itself,
which can be useful for inferring properties of the center of the
PSF, and another one containing its square root, which gives
a better contrast to the tails of the PSF. Once the wavefront
coefficients are computed, this normalization is not needed and
the deconvolved image can be reconstructed using the original
images.

The following augmenting strategy is applied to help
improve the generalization capabilities of the neural network.
Each burst is randomly rotated 0, 90, 180, or 270 degrees and
flipped horizontally or vertically with equal probability. The
neural networks are implemented in PyTorch 1.6 (Paszke et al.
2019). We use the Adam optimizer (Kingma & Ba 2014), with a
learning rate of 3×10−4 and a batch size of 16, during 25 epochs.
We found that the chosen learning rate produces suitable results
and it was kept fixed for all experiments. As a consequence
of the serial nature of the recurrent network, each epoch takes
roughly 17 min, so the total training time is roughly 7 h on a
single NVIDIA RTX 2080 Ti GPU. A large fraction of the com-
puting time in the forward pass occurs on the computation of the
OTFs and the computation of the loss function.
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Fig. 3. Time evolution of the first 36 coefficients of the phase in the KL basis in radians for the σ-Ori observation. The parameters found by the
classical MFBD solution are shown in blue, while those inferred by the neural network are shown in orange.

When in evaluation mode, the outputs of the network are
the wavefront coefficients. Unless one is interested in computing
the deconvolved image, the calculation of the OTF can be safely
ignored. Perhaps the largest difference with respect to the direct
optimization of the loss function is that the computing time for
a single pass for 100 frames is 20 ms, almost 3000 times faster.
This time includes the input and output time to and from the
GPU, respectively, and contains some overheads that can be eas-
ily avoided. Additionally, thanks to the inherent parallelization in
GPUs, the time per deconvolution can be reduced if several stars
are deconvolved concurrently. The only limitation is the amount
of memory on the GPU.

3.3. Point spread functions

Figure 2 shows examples of the inferred PSFs for different stars
from the test set. We show the fir st five frames of the burst in
the upper row. We can immediately verify that the seeing condi-
tions and S/N are different in all the examples we consider. For
instance, the spread of the images in σ-Ori is much larger than
that of GJ661, indicating greater turbulence.

The second row of the panels displays the instantaneous PSF
(we display the square root to increase the dynamic range of
the plot) estimated by the neural approach, while the fourth row
shows the results of the baseline. The results clearly show that, in
general, we are capturing the shape of the PSF correctly, includ-
ing a large fraction of the wings. After extensive experiments,
we have not found any clear sign of PSF degeneracy, which is
fundamentally a consequence of assuming a pupil-based PSF.

Finally, as a consistency check, we re-convolve the image
obtained from Eq. (20) with the estimated PSF in both the neu-
ral and baseline cases. Our aim with this experiment is to give
a visual approximate cross-check of the quality of the inferred
PSF. Obviously, the resulting images should be similar to each
observed frame, apart from the obvious noise reduction conse-
quence of the cleaner deconvolved image. However, one should
be cautious because the result strongly depends on the quality
of the deconvolved image, which crucially depends on the fil-
ter in the case of Eq. (20) or the estimated PSD of the object
in the case of Eq. (21). In any case, one can see minute details
of the image that are reproduced with great fidelity in the re-
convolved image. Perhaps one could argue that, in cases of very
bad seeing with complex PSFs as in the case of σ-Ori, the re-
convolved object is slightly more diffuse than the original one.
However, the neural approach captures enough details of the PSF
so that the ensuing deconvolved image can be made of very high
quality.

3.4. Karhunen-Loeve coefficients

A different way of comparing the baseline and our neural
approach is by analyzing the inferred wavefront coefficients.
Figure 3 shows the first 36 KL modes for σ-Ori: the baseline
in blue and those obtained with the neural network in orange.
These results are relevant because the results of the baseline
have been used by (van Noort 2017) to correct strictly simul-
taneous spectropolarimetric data with excellent results. Con-
sequently, our approach can produce fundamentally the same
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Fig. 4. Four examples of extended object deconvolution, each one showing results for the WB and one of the NB channels. Upper row: displays the
baseline deconvolution together with four raw frames. Second and fourth rows: display the estimated PSFs by the neural network and the baseline,
respectively. As NB and WB channels are simultaneous, the PSFs are shared for the two objects.

instantaneous PSFs with a much reduced computational burden.
Apart from that, it turns out to be relatively trivial to obtain
instantaneous properties of the PSF (e.g., Strehl ratio) from these
coefficients.

The tip-tilt coefficients (first and second coefficients) are very
well estimated. The same happens with KL8 and KL9. There
are some discrepancies in some of them, especially in KL10.
In general, we find that the high-order coefficients are correctly
obtained on average, but their amplitude is short in comparison
with those of the baseline. In any case, there are potential quasi-
ambiguities in the problem for which different combinations of
KL modes can produce very similar PSFs that cannot be dis-
tinguished during the deconvolution. The recurrent structure in
our neural architecture is able to exploit the time correlation that
is present in the wavefront coefficients. We note that, although
each frame has 30 ms exposure time, the overhead due to read-

out is ∼56%. Therefore, the total elapsed time for 100 frames is
roughly 4.7 s.

4. Results for extended objects

The previous results show that it is possible to train our system
to estimate wavefronts from bursts of images of stellar objects
without supervision. It is true that the PSF is directly accessi-
ble from the image when dealing with point-like objects, even
though it might be repeated several times in the FOV because
of the presence of several objects in the FOV. The extended case
that we face in this section is much more challenging because the
neural network has to be able to estimate good wavefront coef-
ficients from images that fill the FOV and have arbitrary bright-
ness variations.
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4.1. Training and validation sets

We employ the same datasets that were used in Asensio Ramos
et al. (2018). They were observed with the CRisp Imaging Spec-
troPolarimeter (CRISP) instrument at the Swedish 1 m Solar
Telescope (SST) on the Observatorio del Roque de los Mucha-
chos (Spain). The data used for training are spectral scans on the
Fe i doublet on 6301–6302 Å containing 15 wavelength points
with a pixel size of 0.059′′. The observations include the four
polarization modulation states that are used to measure the full-
Stokes vector. The polarimetric modulation is carried out at
each wavelength sequentially, producing two narrow band (NB)
orthogonal images (CRISP uses dual beam polarimetry to mini-
mize seeing-induced cross-talk) for a set of seven acquisitions
of 17.35 ms each. Additionally, a wide band (WB) image is
strictly synchronized with the NB images. The three images are
used as input in the neural network. The images of the training
set are corrected following the standard procedure (de la Cruz
Rodríguez et al. 2015), which includes: dark current subtraction,
flat-field correction, and subpixel image alignment between the
two NB cameras and the WB camera. We finally normalize them
by the median value in the FOV.

The seeing conditions during the observations were fairly
good, albeit with temporal variations, and were indeed repre-
sentative of the typical seeing conditions at the SST that lead
to scientifically relevant data. Nevertheless, the training set is
slightly suboptimal because of the limited sampling of seeing
conditions. The training set is composed of two spectral scans of
a quiet-Sun region, observed on 2016 September 19 from 10:03
to 10:04 UT, together with another spectral scan of a region of
flux emergence observed on the same day from 09:30 to 10:00.
The validation set is a spectral scan from the first run obtained in
different seeing conditions.

Computing the loss function and the final deconvolved image
in extended objects that fill the FOV requires some form of
apodization. The computation of the Fourier transforms using
the Fast Fourier Transform requires periodic functions and
apodization is a way to force it. We use a modified Hanning win-
dow that keeps the center of the FOV unaffected and only affects
the 7 pixels in each border. The unaffected FOV is then 74 × 74
pixels. As a consequence of the apodization, it is preferable
to evaluate the loss function of Eq. (22) in spatial dimensions
(Löfdahl & Scharmer 1994). Although the effect is not very
large, one can take into account only those points in the FOV,
removing the apodized part. This can be easily performed by
applying Parseval’s theorem.

4.2. Deconvolution and point spread functions

Figure 4 shows four representative cases obtained once the neu-
ral network is properly trained. The first column displays the
deconvolved images, both the baseline result (labeled ‘MFBD’)
and the resulting deconvolved image using the PSFs estimated
by the neural network (‘labeled Neural’). We show results for
the WB and only one of the two NB channels. The two NB chan-
nels are indeed very similar and their difference is proportional
to the polarization, which is expected to be very small for many
of the observed regions. The first and third columns display four
of the seven available raw frames. It is clear that the multiframe
blind deconvolution produces much better image quality with
only seven frames, but our architecture can deal seamlessly with
an arbitrary number of raw frames. The estimated PSFs are dis-
played in the second and fourth columns, which are shared by
the WB and NB channels.

5. Conclusions and outlook

We present a general scheme to train a neural multiframe blind
deconvolution architecture without supervision. The method
makes use of observed images only, together with information
about the telescope entrance pupil, the angular pixel size in the
camera, and the wavelength of the observations. We have shown,
with examples obtained from the NOT with point-like objects
and the SST with extended objects, that the neural deconvolu-
tion generalizes correctly to unseen images. The method also
provides as output the instantaneous wavefronts produced by the
atmospheric turbulence, irrespectively of the number of frames
used. The method is extremely fast if compared with standard
iterative blind deconvolution methods. The code for training
or evaluation, with the parameters of the networks, is freely
available2.

Given the fundamental ambiguities of inferring wavefronts
from PSFs (Paxman et al. 2019), we do not consider that our
method is especially competitive with more classical approaches
based on, for instance, Shack-Hartmann sensors. However, our
estimation of the instantaneous PSF is adequate for the deconvo-
lution of images or spectra (van Noort 2017).

Our aim in this paper is to present the formalism for the unsu-
pervised training. However, we point out that there are several
possible ways of improving this work. The first one is to train an
architecture that can blindly deconvolve images from a variety
of telescopes and/or wavelengths. However, observations made
using these telescopes and/or wavelengths are needed for the
training. The formalism remains the same, except for the con-
struction of the OTF from the generalized pupil. In this case, one
needs to take into account the specific aperture of the telescope
and the influence of the wavelength on the diffraction limit of
the telescope. Apart from that, we anticipate that conditioning
the entrance of the RNNs feature vector with the telescope prop-
erties and the wavelength should be sufficient. This can be easily
done by concatenating this information on the input vector.

The second potential improvement is to add more training
examples that have a larger variety of objects, especially extend-
ing it to other wavelengths of interest. However, we note that
the convolutional part of the architecture that we have trained is
in charge of obtaining relevant latent features from the image,
from which a good estimation of the wavefront coefficients can
be produced. As such, this CNN needs to learn how to be agnos-
tic to the specific object, which can be difficult if the variability
of objects is increased. This can easily be solved if more infor-
mation is provided to the neural network. An obvious solution
is to use a phase-diversity channel. The combination of the two
images contains (theoretically) enough information to restrict the
wavefront. Very preliminary experiments show that this addition
strongly constrains the problem and produces wavefront coeffi-
cients of much better quality, which might then be competitive
with those obtained with classical wavefront sensing methods.

Another restriction of our approach is that the input images
are currently limited to be of a fixed size such that W is a multi-
ple of 8. This is a consequence of the presence of the fully con-
nected GRU and FC networks. This can be potentially solved
by transforming our architecture into a fully convolutional one.
Some convolutional counterparts of RNNs can be used, such as
the ConvLSTM (Shi et al. 2015). Also, the FC network can then
be transformed into a fully convolutional network. All networks
can be trained with images of a certain size, and once trained
can be applied to images of any other size. For instance, if the
input images are of 128 × 128 pixels in size, the input to the
2 https://github.com/aasensio/unsupervisedMFBD
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ConvLSTM will be 16×16, meaning that at the output we would
predict the wavefront in 16×16 patches of 8×8 pixels. For com-
puting the loss function one would need a way to deal with these
spatially variant PSFs. One option would be to compute the loss
function locally in each patch and add them together.

Finally, although the GRU behaves correctly in our case,
its serial character makes it slightly slow when training, mean-
ing that it cannot be run in parallel. Recurrent neural networks
have been improved in recent years by the use of more robust
approaches. We plan to study the application of ‘transformers’
(Vaswani et al. 2017), which can better exploit the time informa-
tion of the observations.
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